

Main Contributions

A novel large-scale dataset comprising contemporary high-fidelity 3D LiDAR (128 channels), stereo/ambient/reflectivity imagery, GNSS/INS and illumination information under repeated route, variable environment conditions. The first autonomous driving task dataset to additionally comprise usable **ambience and reflectivity** LiDAR obtained imagery.

LiDAR point clouds from two exemplar scenes with differing vertical LiDAR resolution (left to right: colour RGB images, $[32 \rightarrow 64 \rightarrow 128]$ LiDAR vertical channels).

Examples from DurLAR dataset. From top to bottom, RGB left camera images (top), grayscale right camera images (2nd row), LiDAR point cloud (3rd row), ambient (near infrared, 4th row) and reflectivity (bottom) panoramic images.

Bearpark		Dataset	Res	Range/m	Diversity	Image	#Frames	Other sensors
Nevill	Cally Commission of the American	DENSE	64	120	E/W/T	I	1M	D/M/F/T/B
	campus A	H3D	64	120	Е	I	28k	G/M
B residential		KITTI SemanticKITTI	64	120	Е	I	93k	N/S/G/M/B
Mandowfield		KITTI-360	64	120	Е	I	320k	N/S/G/M/B
	highway avit	LiVi-Set	32	100	Е	I	10k	
	Bowburn	Lyft Level 5	64	200	E/W/T	I	170k	D/B
C city centre		nuScenes	32	100	E/W/T	I	1M	M/D/B
		Oxford RobotCar	4	50	E/W/T	I	3M	N/S/G/M/B
		Stanford Track	64	120	E	I	14k	М
D suburban	highway	Sydney Urban Objects	64	120	Е	I	0.6k	
1 km Spennymoor		DurLAR (ours)	128	120	E/W/T/L	I/A/R	100k	U/N/S/G/M/B

An exemplar monocular depth estimation benchmark to compare the performance of supervised/self-supervised variants of three leading approaches [1, 2, 3] when trained and evaluated on low resolution (KITTI [4]), high resolution (DurLAR) ground truth LiDAR depth, or our novel KITTI/DurLAR dataset partition, with the observation that increased resolution enables superior monocular depth estimation performance via our joint supervised/self-supervised loss formulation.

DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal **Autonomous Driving Applications**

Li Li, Khalid N. Ismail, Hubert P. H. Shum, Toby P. Breckon, Durham University, UK

Sensor Setup

LIDAR: Ouster OS1-128 LIDAR sensor with 128 channels vertical resolution, 2048 @10 Hz rotation rate mode). Stereo Camera: Carnegie Robotics MultiSense S21 stereo camera with grayscale, colour, and IR enhanced imagers. GNSS/INS: OxTS RT3000v3 global navigation satellite and inertial navigation system, 0.03° pitch/roll accuracy, 0.1-1.5m position accuracy. Lux Meter: Yocto Light V3, a USB ambient light sensor (lux meter).

Test vehicle (Renault Twizy) and sensor placements. Coordinate axes follow the right-hand rule.

The DurLAR Dataset

Ambient images: day/night scene visibility in the near-IR spectrum. **Reflectivity images:** information indicative of the material properties of the object itself and offer good consistency across illumination conditions and range.

Calibration and Synchronisation

All sensor synchronisation is performed at a rate of 10 Hz, using ROS (version Noetic) timestamps operating over a Gigabit Ethernet backbone to a common host (Intel Core i5, 16) GB RAM).

Sensor	Collecting rate	External calibration
Lidar	10Hz	(a) Stereo; (b) GNSS/INS
GNSS/INS	100Hz	(b) LiDAR; stereo
Stereo	30Hz	(a) LiDAR; GNSS/INS
Lux meter	30Hz	

Monocular Depth Estimation

Leading approach for monocular depth estimation: ManyDepth [1].

R	CGB image 1024x544)			ί	Dep	Depth_predict_raw (w x h)			
	Point cloud projection	\mathcal{L}_{Berh}	u (d, d*)	$= \begin{cases} d - d \\ (d - d) \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$	$\frac{l^* }{l^*)^2 + \delta^2}{2\delta}$	if d – if d –	$ d^* \le \delta$ $ d^* > \delta$	Int to ma	erpolate tch the size
(1	Depth_gt 1024x544)		Size	Compu per-pixel e must be t	te rrors he same			Depth_predict (1024x544)	
Dataset	Method	+S	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
ктттт	ManyDepth (MR)	Х	0.098	0.770	4.459	0.176	0.900	0.965	0.983
KITTI	ManyDepth (MR)	Х	0.093	0.715	4.245	0.172	0.909	0.966	0.983
Cityscapes	ManyDepth	х	0.114	1.193	6.223	0.170	0.875	0.967	0.989
	Depth-hints	Х	0.122	1.070	4.148	0.211	0.870	0.946	0.972
	Depth-hints		0.121	1.109	4.121	0.210	0.874	0.946	0.972
	MonoDepth2	х	0.111	1.114	4.002	0.187	0.895	0.960	0.981
DurLAR	MonoDepth2	\checkmark	0.108	<u>1.010</u>	<u>3.804</u>	0.185	0.898	0.963	0.982
	ManyDepth (MR)	х	0.115	1.227	4.116	0.186	0.892	0.962	0.982
	ManyDepth (MR)	\checkmark	0.109	0.936	3.711	<u>0.176</u>	0.895	0.964	0.984
	ManyDepth (HR)	х	0.109	1.111	3.875	0.177	0.901	0.966	0.984
	ManyDepth (HR)		0.104	0.936	3.639	0.171	0.906	0.969	0.986

Co	onfig.	Abs Rel	Sq Rel	RMSE	RMSE log	δ < 1.25	δ < 1.25 ²	δ < 1.25 ³	Camera image	ManyDepth	ManyDepth
ú	К	0.159	1.536	5.101	0.244	0.798	0.923	0.963	080	(self-supervised)	(ours)
ss- sets	D	0.189	1.764	5.580	0.264	0.758	0.908	0.959			
Cro ata	K+D	0.188	1.941	5.182	0.262	0.769	0.912	0.958			
σ	D+K	0.151	1.123	4.744	0.233	0.805	0.927	0.967			
I N	32/+S	0.115	0.908	3.677	0.179	0.888	0.966	0.985			
lation hannel	64/+S	0.107	0.918	3.735	0.175	0.895	0.967	0.986			-0
	128/-S	0.109	1.111	3.875	0.177	0.901	0.966	0.984			
Ab C	128/+S	0.104	0.936	3.639	0.171	0.906	0.969	0.986		and the second s	

Future Applications

reflectivity/ambient

[1] Watson et al., The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth. CVPR, 2021 [2] Godard et al., Digging Into Self-Supervised Monocular Depth Estimation. CVPR, 2019. [3] Zhou et al., Unsupervised learning of depth and ego-motion from video. CVPR, 2017. [4] Geiger et al., Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. CVPR, 2012. [5] Cordts et al., The Cityscapes Dataset for Semantic Urban Scene Understanding. CVPR, 2016.

Online access for the dataset, github.com/l1997i/DurLAR.

Performance comparison over the KITTI Eigen split [4], Cityscapes [5] and DurLAR datasets.

SLAM

Driver Attention Monitoring

