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▪ A novel method for embedding RAPiD with class-aware double nested AE to 
optimize the embedding of high-dimensional features, balancing e�iciency 
and fidelity.

▪ A novel open-source network architecture RAPiD-Seg and supporting 
training methodology for LiDAR segmentation.

▪ SoTA LiDAR segmentation performance in terms of mIoU on SemanticKITTI 
(76.1) and nuScenes (83.6) dataset.

Range-Aware Pointwise Distance Distribution (RAPiD) is the feature for 3D 
LiDAR segmentation that ensures robustness to rigid transformations and 
viewpoints through isometry-invariant metrics.
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Table 1: Quantitative results of RAPiD-Seg and top-10 SoTA segmentation methods
on SemanticKITTI [2] test set; Best/2nd best highlighted; � for multi-modal methods.

Method mIoU car bicy moto truc o.veh ped b.list m.list road park walk o.gro build fenc veg trun terr pole sign

Cylinder3D [64] 68.9 97.1 67.6 63.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2
AF2S3Net [7] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
RPVNet [56] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4

SDSeg3D [27] 70.4 97.4 58.7 54.2 54.9 65.2 70.2 74.4 52.2 90.9 69.4 76.7 41.9 93.2 71.1 86.1 74.3 71.1 65.4 70.6
GASN [61] 70.7 96.9 65.8 58.0 59.3 61.0 80.4 82.7 46.3 89.8 66.2 74.6 30.1 92.3 69.6 87.3 73.0 72.5 66.1 71.6

PVKD [17] 71.2 97.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8
2DPASS [58] 72.9 97.0 63.6 63.4 61.1 61.5 77.9 81.3 74.1 89.7 67.4 74.7 40.0 93.5 72.9 86.2 73.9 71.0 65.0 70.4

PCSeg [36] 72.9 97.5 51.2 67.6 58.6 68.6 78.3 80.9 75.6 92.5 71.5 78.3 36.9 93.1 71.4 85.4 73.6 69.9 66.1 68.7
RangeFormer [22] 73.3 96.7 69.4 73.7 59.9 66.2 78.1 75.9 58.1 92.4 73.0 78.8 42.4 92.3 70.1 86.6 73.3 72.8 66.4 66.6

�UniSeg [37] 75.2 97.9 71.9 75.2 63.6 74.1 78.9 74.8 60.6 92.6 74.0 79.5 46.1 93.4 72.7 87.5 76.3 73.1 68.3 68.5
RAPiD-Seg (Ours) 76.1 97.7 71.1 76.2 72.5 80.7 79.9 79.1 59.8 91.8 78.2 78.6 46.0 93.6 72.1 86.9 74.6 72.3 65.9 68.5

Table 2: Quantitative results of RAPiD-Seg and top-10 SoTA segmentation methods
on nuScenes [3] test set; Best/2nd best highlighted; � for multi-modal methods.

Method mIoU barr bicy bus car const motor ped cone trail truck driv other walk terr made veg

�PMF [65] 77.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0
Cylinder3D [64] 77.2 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6

AMVNet [34] 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVCNN [49] 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
AF2S3Net [7] 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8

�2D3DNet [12] 80.0 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2
GASN [61] 80.4 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2

2DPASS [58] 80.8 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0
�LidarMultiNet [60] 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6

�UniSeg [37] 83.5 85.9 71.2 92.1 91.6 80.5 88.0 80.9 76.0 86.3 76.7 97.7 71.8 80.7 76.7 91.3 88.8

RAPiD-Seg (Ours) 83.6 84.8 64.3 95.0 92.2 84.6 87.9 81.8 76.8 88.5 79.0 97.8 66.6 81.2 76.7 92.5 88.4

enable segmentation based on material properties and local rigid structures. Re-
markably, our single-modal methodology outperforms multi-modal approaches [22,
34,37,56,58,60], suggesting superior efficacy of our RAPiD features over alternative
modalities like RGB and range images. Our inference time (105ms per frame)
is comparable to other contemporary approaches [37, 58, 64]. Furthermore, we
present supporting qualitative results in Fig. 6. Whereas the baseline method
struggles with accurate vehicle type differentiation, ours achieves consistent
segmentation (more visualization results in the supplementary materials).

RAPiD Features Attention mIoU ∆Geometric Reflectivity Embedding
70.04 (Baseline)

� 70.46 (+0.42)
� 71.21 (+1.17)
� � 71.93 (+1.89)
� � � 72.15 (+2.11)

� � � 71.80 (+1.76)
� � � 72.32 (+2.28)
� � � 72.78 (+2.74)

� � � � 73.02 (+2.98)

Table 3: Component-wise ablation of
RAPiD-Seg on the SemanticKITTI valida-
tion set: Geometric (Eq. (1)), Reflectivity
(Eq. (3)), (RAPiD) Embedding (Sec. 4),
(channel) Attention (Sec. 5.1).
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Fig. 6: Comparing our results and PCSeg
(baseline) under multi-scan visualization,
showing improved segmentation results.

6.3 Ablation Studies

Effectiveness of Components: In Tab. 3, we ablate each component of RAPiD-
Seg step by step and report the performance on the SemanticKITTI validation
set. We start from a baseline model, achieving an mIoU of 70.04 on validation set.

Tab. Results on SemanticKITTI test set.

▪ (a) R-RAPiD-Seg. We first construct the lightweight R-RAPiD-Seg network for 
fast 3D segmentation.

▪ (b) C-RAPiD-Seg. We then train the C-RAPiD-Seg network to facilitate the 
embedding fidelity within individual semantic classes.

RAPiD-Seg Architecture is a double nested AE structure with a novel 
class-aware embedding objective, to reduce computational costs while 
providing feature learning capacity.

Tab. Component-wise ablations.

Fig. Qualitative results comparing our results and PCSeg baseline.
Gc

RAPiD AE

G RAPiD AE

x, y, z, I, J
Rv

VSA

G RAPiD AE
Backbone

x, y, z, I, J
Rv

VSA

Backbone

pseudo labels

(a) R-RAPiD-Seg (b) C-RAPiD-Seg

@test time

fu
si

on

fu
si

on3x

3x

3x

RAPiD-Seg Networks for 3D LiDAR Segmentation 5

Traditional methods predominantly leverage 3D point coordinates to furnish
spatial information [17,50,64]; however, they may be inadequate in the scenes with
poor visibility (e.g ., occlusions) or sparse observations (e.g ., at long range) [26].
Such reliance on coordinates alone could lead to inaccuracies in recognizing object
transformations or occlusions [26]. Data augmentation, e.g ., random geometric
transformation can improve robustness under rigid transformations [50,64], but
fail to guarantee comprehensive coverage of all potential transformations, resulting
in vulnerability to previously unseen variations.

3.1 Overview

To achieve a transformation-invariant 3D data representation, we observe that
distances within rigid bodies (e.g ., vehicles, roads, and buildings) remain constant
under rigid transformations. In light of this, we focus on assimilating the principle of
the isometric invariant into the LiDAR-driven point cloud perception. Specifically,
we delve into the PDD [52] — an isometry invariant that quantifies distances
between adjacent points. For outdoor point clouds, vanilla PDD features are
computationally intensive and susceptible to noise and sparsity. Our Range-Aware
Pointwise Distance Distribution (RAPiD), specifically designed for LiDAR data,
instead calculates the PDD features for each point within specific Regions of Interest
(RoI), which are typically associated with the intrinsic structure of LiDAR data.
Mathematical Formulation: Given a fixed number k > 0 representing the
fixed number of point neighbors and a u-point cluster PRoI comprising no fewer
than k points based on RoI, the RAPiD is a u × k matrix, which retains both
spatial distances and LiDAR reflectivity [30] disparities between points. RAPiD
are adapted to LiDAR sparsity at different distances by using range-specific
parameters kclose, kmid, kfar for close, mid, and far ranges, respectively.

The k-point RAPiD in region PRoI is defined as:

RAPiD (PRoI; k) = sort
(
[ sort ([ ρj,1, . . . ,ρj,k ]) ]uj=1

)
, (1)

∀l ∈ {1, . . . , k}, j ∈ {1, . . . , u}, ρj,l is given by:

ρj,l =
∥∥[pj − pj,l, g (rj)− g (rj,l)

]∥∥
2
, (2)

where pj and pj,l denote the 3D coordinates of the j-th point and its l-th nearest
neighbor within PRoI, respectively; rj and rj,l represent the reflectivity values of
pj and pj,l, correspondingly; ‖ · ‖2 is the Euclidean norm. g : R → [Dmin, Dmax]
is the reflectivity mapping function that maps the numerical range of reflectivity
onto a consistent scale with the range of Euclidean distances between points:

g(r) =

(
r − rmin

rmax − rmin

)
(Dmax −Dmin) +Dmin, (3)

Dmin = min
j,l

‖pj − pj,l‖2 , Dmax = max
j,l

‖pj − pj,l‖2 . (4)

where [Dmin, Dmax] is the range of the Euclidean norms of coordinate differences
for all considered point pairs.

The 4D distance in Eq. (2) integrates material reflectivity [30] into RAPiD fea-
tures, enhancing feature representation and aiding in the discrimination of various
materials and surfaces, which is crucial for accurate semantic segmentation.
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Table 5: 3D segmentation results of dif-
ferent variants of RAPiD-Seg (ours) on
SemanticKITTI validation set.

Method mIoU % car ped o.gro pole

Baseline 70.0 97.2 78.1 35.4 63.5
R-RAPiD-Seg 72.3 (+2.3) 97.4 77.4 45.0 62.4
C-RAPiD-Seg 73.0 (+3.0) 97.7 79.3 44.6 66.4

Table 6: Effects of k at various ranges.

PDD [53] RAPiD (ours)
knear kmid kfar mIoU knear kmid kfar mIoU

Se
m

K 7 7 7 64.74 (-7.1) 7 7 7 72.04 (+0.2)
5 5 5 65.18 (-6.6) 5 5 5 72.28 (+0.5)
10 7 5 66.23 (-5.6) 10 7 5 73.02 (+1.2)

nu
Sc

en
e 6 6 6 72.19 (-6.5) 6 6 6 78.76 (+0.1)

3 3 3 73.68 (-5.0) 3 3 3 79.43 (+0.8)
8 6 3 72.24 (-6.4) 8 6 3 79.91 (+1.3)

Concurrent fusing of both R- and C-RAPiD-Seg features in R-RAPiD-Seg improves
performance by +0.7 mIoU, which shows a +3.0 overall mIoU enhancement.
Effectiveness of Feature Fusion with Channel-wise Attention: In Tab. 3,
we assess the prevalent approach of direct feature concatenation. Our method,
employing feature fusion with channel-wise attention, enhances mIoU by 0.87,
thereby conclusively demonstrating its effectiveness.
Effectiveness of Backbone Networks: In Tab. 7, we evaluate the performance
across multiple backbone networks to demonstrate the versatility and ease of
integration of our modules. The results highlight the adaptability and effectiveness
of our approach on both pointwise (P) and Voxel-wise (V) backbone architectures.
Specifically, the point-based PTv2 backbone achieves an mIoU of 72.6, showing
strong performance, particularly in the car and other ground categories. Among
the voxel-based methods, Minkowski-UNet stands out with the highest overall
mIoU of 73.0, excelling in the pedestrian and pole categories.

Table 7: Effects of using different backbones on SemanticKITTI validation set, where
P and V for Point- and Voxel-wsie methods.

Repr. Backbone mIoU % car ped o.gro pole
P PTv2 [55] 72.6 (+2.8) 97.4 77.4 45.0 62.4
V Cylinder3D [64] 69.8 96.9 74.2 37.9 63.0
V Minkowski-UNet [8] 73.0 (+3.2) 97.2 78.1 44.2 65.9

7 Conclusion and Discussion
This paper presents a novel Range-Aware Pointwise Distance Distribution
(RAPiD) feature and the RAPiD-Seg network for LiDAR segmentation, adeptly
overcoming the constraints of single-modal LiDAR methods. The rigid transforma-
tion invariance and enhanced focus on local details of RAPiD significantly boost
segmentation accuracy. RAPiD-Seg integrates a two-stage training approach with
reflectivity-guided 4D distance metrics and a class-aware nested AE, achieving
SoTA results on the SemanticKITTI and nuScenes datasets. Notably, our single-
modal method surpasses the performance of multi-modal methods, indicating the
superior efficacy of RAPiD features even compared to other modalities, including
RGB and range images.

Our RAPiD features hold significant potential for application in various tasks
such as point cloud registration, semi-/weakly- supervised learning, and extend
to promising applications in multi-modal research in the future.
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Tab. E�ects of k at various ranges.

Tab. Performance of di�erent variants.

Fig. RAPiD embeddings.
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Table 1: Quantitative results of RAPiD-Seg and top-10 SoTA segmentation methods
on SemanticKITTI [2] test set; Best/2nd best highlighted; � for multi-modal methods.

Method mIoU car bicy moto truc o.veh ped b.list m.list road park walk o.gro build fenc veg trun terr pole sign

Cylinder3D [64] 68.9 97.1 67.6 63.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2
AF2S3Net [7] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
RPVNet [56] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4

SDSeg3D [27] 70.4 97.4 58.7 54.2 54.9 65.2 70.2 74.4 52.2 90.9 69.4 76.7 41.9 93.2 71.1 86.1 74.3 71.1 65.4 70.6
GASN [61] 70.7 96.9 65.8 58.0 59.3 61.0 80.4 82.7 46.3 89.8 66.2 74.6 30.1 92.3 69.6 87.3 73.0 72.5 66.1 71.6

PVKD [17] 71.2 97.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8
2DPASS [58] 72.9 97.0 63.6 63.4 61.1 61.5 77.9 81.3 74.1 89.7 67.4 74.7 40.0 93.5 72.9 86.2 73.9 71.0 65.0 70.4

PCSeg [36] 72.9 97.5 51.2 67.6 58.6 68.6 78.3 80.9 75.6 92.5 71.5 78.3 36.9 93.1 71.4 85.4 73.6 69.9 66.1 68.7
RangeFormer [22] 73.3 96.7 69.4 73.7 59.9 66.2 78.1 75.9 58.1 92.4 73.0 78.8 42.4 92.3 70.1 86.6 73.3 72.8 66.4 66.6

�UniSeg [37] 75.2 97.9 71.9 75.2 63.6 74.1 78.9 74.8 60.6 92.6 74.0 79.5 46.1 93.4 72.7 87.5 76.3 73.1 68.3 68.5
RAPiD-Seg (Ours) 76.1 97.7 71.1 76.2 72.5 80.7 79.9 79.1 59.8 91.8 78.2 78.6 46.0 93.6 72.1 86.9 74.6 72.3 65.9 68.5

Table 2: Quantitative results of RAPiD-Seg and top-10 SoTA segmentation methods
on nuScenes [3] test set; Best/2nd best highlighted; � for multi-modal methods.

Method mIoU barr bicy bus car const motor ped cone trail truck driv other walk terr made veg

�PMF [65] 77.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0
Cylinder3D [64] 77.2 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6

AMVNet [34] 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVCNN [49] 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
AF2S3Net [7] 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8

�2D3DNet [12] 80.0 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2
GASN [61] 80.4 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2

2DPASS [58] 80.8 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0
�LidarMultiNet [60] 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6

�UniSeg [37] 83.5 85.9 71.2 92.1 91.6 80.5 88.0 80.9 76.0 86.3 76.7 97.7 71.8 80.7 76.7 91.3 88.8

RAPiD-Seg (Ours) 83.6 84.8 64.3 95.0 92.2 84.6 87.9 81.8 76.8 88.5 79.0 97.8 66.6 81.2 76.7 92.5 88.4

enable segmentation based on material properties and local rigid structures. Re-
markably, our single-modal methodology outperforms multi-modal approaches [22,
34,37,56,58,60], suggesting superior efficacy of our RAPiD features over alternative
modalities like RGB and range images. Our inference time (105ms per frame)
is comparable to other contemporary approaches [37, 58, 64]. Furthermore, we
present supporting qualitative results in Fig. 6. Whereas the baseline method
struggles with accurate vehicle type differentiation, ours achieves consistent
segmentation (more visualization results in the supplementary materials).

RAPiD Features Attention mIoU ∆Geometric Reflectivity Embedding
70.04 (Baseline)

� 70.46 (+0.42)
� 71.21 (+1.17)
� � 71.93 (+1.89)
� � � 72.15 (+2.11)

� � � 71.80 (+1.76)
� � � 72.32 (+2.28)
� � � 72.78 (+2.74)

� � � � 73.02 (+2.98)

Table 3: Component-wise ablation of
RAPiD-Seg on the SemanticKITTI valida-
tion set: Geometric (Eq. (1)), Reflectivity
(Eq. (3)), (RAPiD) Embedding (Sec. 4),
(channel) Attention (Sec. 5.1).
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Fig. 6: Comparing our results and PCSeg
(baseline) under multi-scan visualization,
showing improved segmentation results.

6.3 Ablation Studies

Effectiveness of Components: In Tab. 3, we ablate each component of RAPiD-
Seg step by step and report the performance on the SemanticKITTI validation
set. We start from a baseline model, achieving an mIoU of 70.04 on validation set.
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