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Abstract—Detecting traversable pathways in unstructured out-
door environments remains a significant challenge for au-
tonomous robots, especially in critical applications such as wide-
area search and rescue, as well as in incident management
scenarios such as forest fires. Current datasets and models
primarily focus on either urban environments or wide vehicle-
traversable off-road tracks, leaving a substantial gap in tackling
the complexities of trail-based off-road scenarios. To address
this issue, we introduce the Trail-based Off-road Multimodal
Dataset (TOMD), a comprehensive dataset explicitly designed
for narrow and unstructured trail-like environments. Our dataset
features high-fidelity multimodal sensor data — including 128-
channel LiDAR, stereo imagery, GNSS, IMU, and illumination
measurements — collected through repeated runs across di-
verse environmental conditions. In addition, we propose a novel
dynamic multiscale data fusion model for precise traversable
pathway prediction in trail-like areas. The study investigates the
impact of various fusion processes — early, cross, and mixed
— on model performance under different illumination levels:
low-light, normal ambient lighting, and bright conditions. The
results highlight the effectiveness of our approach, variation
in performance across illumination levels, and the potential
applicability of the dataset in diverse environmental conditions.

Our work provides a valuable resource for advancing trail-
based off-road navigation, and we openly publish our TOMD at
https://github.com/yyyxs1125/TMOD to establish a future bench-
mark in this research domain.

I. Introduction
Detecting traversable zones in unstructured outdoor environ-
ments pose significant challenges for autonomous robots, partic-
ularly in critical real-world applications such as wide-area search
and rescue, as well as incident management scenarios such as
forest fires. Off-road scenarios, particularly on narrow trails,
pose unique challenges, such as restricted pathway widths for
vehicles, vegetation that obscures the boundaries of traversable
areas, and highly variable illumination due to canopy shading.
Addressing these challenges necessitates high-quality, reliable
data from a mobile acquisition platform. Moreover, data-driven
deep learning approaches further intensify these requirements,
as they demand extensive and diverse off-road datasets to ensure
robust and generalisable performance under varying real-world
operational conditions.

Whilst existing datasets focused on urban environments [1]–
[3] are widely used as benchmarks for road detection segmenta-
tion models, the development of datasets and models for off-road

(a) 128-Channel LiDAR Point Clouds with corresponding left-lens
(bottom-left) and right-lens (bottom-right) images from ZEDx Stereo
camera. And the white arrow indicates the orientation of our robot.

(b) Image with annotated traver-
sable trail ground truth (green).

(c) Image with predicted traver-
sable trail (red).

Fig. 1. TOMD overview: LiDAR and stereo camera visualiza-
tion with ground truth and predicted traversable trail under high
illumination.

scenarios has lagged behind, with a significantly smaller cata-
logue of publicly available datasets, which predominantly focus
on dual-track, vehicle-traversable off-road paths — referred to as
‘green lanes’ in the UK and ‘jeep trails’ in the US. These datasets
largely overlook the narrower concept of human-traversable
trails (or pathways), which, in reality, constitute the majority
of off-road egress points into unstructured natural environments
globally. To address this research gap, we introduce the Trail-
based Off-road Multimodal Dataset, the first dataset explicitly
designed to enhance perception and interpretation capabilities
in trail environments based on the use of a medium scale all-
terrain robot platform capable of transiting narrower off-road
trails (An overview of TOMD is shown in Fig. 1).

The key contributions of our work in enhancing perception in



such unstructured off-road environments are as follows:
• The TOMD, is specifically designed to represent complex

unstructured trail-like scenarios using a medium-scale
all-terrain robot platform that includes high-fidelity 3D
LiDAR (128 channels), stereo imagery, GNSS, IMU,
telemetry control data, and illumination measurements
that are all collected via repeated route traversal under
varying environmental conditions. In total, it comprises
31.4k frame pairs for image and LiDAR, along with key
frame traversability level annotation.

• A novel data fusion-based dynamic multiscale model
architecture is introduced for precise traversable pathway
segmentation within such trail-like environments. The in-
fluence of different fusion processes — i.e., early, cross, and
mixed fusion — on model performance is thoroughly exam-
ined under varying ambient illumination levels, including
low, medium and high. This analysis demonstrates the
potential applicability of TOMD in diverse environmental
conditions.

• Calibrated and synchronized multi-sensor sequence data
files, along with corresponding traversable-level RGB
annotations and data processing tools, are publicly released
as open-access resources to provide a new performance
benchmark within the field of trail-based robotic navigation
and autonomous exploration.

II. Related Work
We review prior work in two closely related areas: off-road
datasets (Section II-A) and traversable area detection (Sec-
tion II-B).

A. Existing Off-road datasets
In comparison with urban autonomous driving datasets [1]–[3],
[16], off-road datasets have developed more slowly and exhibit
significant gaps in terms of quantity and capacity.

Collection platforms influence the suitability of data collec-
tion methods, with robot-based and handheld-based approaches
being more effective for capturing narrower trails/pathways
(e.g., in forests or gardens) compared to vehicle-based methods.
These trails are often narrower, more complex, unstructured,
and characterised by dense vegetation. In some areas, dense
tree canopies result in very low illumination conditions, posing
challenges for camera-based data collection. Among these
approaches, robot platform based data collection is preferred,
as it both directly replicates realistic navigation/motion patterns
and minimises any human-induced biases, leading to more
consistent and representative data.

Sensor modality plays a critical role in datasets dedicated to
unstructured, off-road driving scenarios. The first such dataset,
RUGD [12], utilised a Husky’ platform robot equipped solely
with a mono camera (Prosilica GT2750C) to capture video
sequences, covering four general unstructured scenes: creek,
park, trail, and village. However, the visual information provided
by a single camera is insufficient for accurate path planning
or prediction, as demonstrated by human-centric experiments
in [17]. To address this limitation, an increasing number

of datasets are expanding their sensor modalities to enrich
the information available. For instance, CaT [8] incorporates
additional cameras to increase the field of view (FOV), and
SOOR [4] integrates Freiburgforest [11], which introduces a
depth camera and near-infrared (NIR) sensor. Additionally, [8]–
[10], [13], [14] integrate Global Positioning System (GPS) and
Inertial Measurement Unit (IMU) sensors to capture positional
features. Most notably, [5]–[7], [9], [10], [13] adopt LiDAR,
widely used in on-road datasets, to acquire spatial data that
support environmental understanding.

High-vertical-resolution LiDAR remains underutilised in
off-road datasets, with no robot-based trail collections incor-
porating such sensors. Among handheld datasets, Wildscenes
[5] and Finnwoodlands [15] use 16- and 64-channel LiDAR,
respectively. Botanicgarden [14] and RELLIS-3D [13], col-
lected by robots, also employ 16- and 64-channel LiDAR. In
vehicle-based collections, ORFD [7] uses a 40-channel LiDAR,
TartanDrive 2.0 [10] combines 32- and 70-channel LiDAR for
wider viewpoints, and GOOSE [9] is the first to adopt 128-
channel LiDAR, significantly enhancing spatial detail. Solid-
State and Digital LiDAR (e.g., [13], [15]) are preferred over
Mechanical Spinning types (e.g., [5], [7], [9], [14]) due to
reduced point cloud distortion via simultaneous channel capture.
The Ouster 128 LiDAR used in our dataset acquires all channels
concurrently, ensuring high precision and consistency. A feature
summary is provided in Table I, with a visual comparison to
RELLIS-3D shown in Fig. 2.

Illumination intensity contributes to dataset diversity by
capturing data across different times, weather conditions, and
seasons. However, most datasets [4]–[7], [11]–[15] do not
include repeated paths under varying lighting. To address this,
we integrate a lux meter to quantify ambient illumination (in
lux) along identical routes. Fig. 3 shows illuminance trends for
three TOMD sequences, alongside representative camera views
for context.

B. Traversable Area Detection

Detecting the traversable area is typically formulated as a
semantic segmentation problem, where the task is to predict re-
gions navigable by autonomous vehicles. Recent advancements
[18], [19] in on-road navigation suggest that fusing cameras
and LiDAR data could be a potential solution to improve
performance by mitigating the limitations of individual sensors.
Based on the fusion stage, methods can be categorised into
early fusion [20], [21], late fusion [22], and cross fusion [23].
Early fusion combines multiple input modalities at the beginning
of processing, before feature extraction, which would allow
the model to learn from all data sources simultaneously. In
contrast, late fusion processes each modality separately through
independent feature extraction pipelines and integrates them
at a later stage, typically during the decision or prediction
phase. Cross fusion, on the other hand, enables the interaction
and exchange of information between different modalities at
multiple stages throughout the processing pipeline, facilitating
better integration and enhancing overall performance. While
most methods have been developed and validated using the



TABLE I: Comparison of Existing Off-road Datasets featuring Sensor Modalities:- C: Camera, D: Depth Camera, G: GNSS, I:
INS, L: LiDAR, M: IMU, N: NIR, U: Lux Meter. Camera resolution: width × height; LiDAR resolution: vertical channels.

Name Sensors Platform Repeated Anno-level (#) Camera Resolution LiDAR Resolution #Frames (C/L)

SOOR [4] C vehicle No objects (7) 768×384 – 0.3k / -
Wildscenes [5] C/G/I/L handheld No objects (15) 2016×1512 16 9.3k / 12.1k

YCOR [6] C vehicle No objects (8) 1024×544 – 13.6k / -
ORFD [7] C/L vehicle No traversability (2) 1280×720 40 12.2k / 12.2k
CaT [8] C/I vehicle Yes traversability (3) 1024×644 – 12.3k / -

GOOSE [9] C/I/L vehicle Yes objects (64) 1024×500 128 10.0k / 10.0k
TartanDrive 2.0 [10] C/G/I/L vehicle Yes - 1024×512 32/70 250k / 250k
Freiburgforest [11] C/D/N robot No objects (6) 1024×768 – 15.0k / -

RUGD [12] C robot No objects (24) 1920×1200 – 7.5k / -
RELLIS-3D [13] C/L/I robot No objects (20) 800×592 64 6.2k / 13.6k

Botanicgarden [14] C/L/I robot No objects (27) 1920×1200 16 2.3M / 1.2M
Finnwoodlands [15] C/L handheld No objects (3) 1280×720 64 5.2k / 5.2k

TOMD (Ours) C/G/L/M/U robot Yes traversability (2) 1920×1080 128 31.4k / 31.4k

(a) Exemplar LiDAR point clouds (left: TOMD (ours), 128 channels; right: RELLIS-3D, 64 channels.)

(b) Stereo camera images (left pair: TOMD (ours), 1920×1080; right pair: RELLIS-3D, 800×592).

Fig. 2. Visual Comparison Between TOMD and the RELLIS-3D Dataset [13]: (a) Point cloud from TOMD with higher density,
richer spatial information, and extended sensing range. (b) Wider stereo camera field of view in TOMD compared to RELLIS-3D.

large-scale on-road KITTI dataset [1], the few that attempt to
apply transfer learning from urban road scenes [24] struggle
to capture the complexities and variabilities of unstructured
environments. Consequently, research specifically addressing
off-road scenarios remains limited. OFF-Net [7] proposes a
cross-attention-based model that dynamically fuses RGB data
with surface normals derived from sparse LiDAR points.
However, the assumption that traversable zones share similar
surface normals may not always hold, as vegetation and other
obstacles can cause irregularities, making the surface deviate
from a typical on-road or vehicle traversable plane.

III. Trail-based Off-road Multimodal Dataset

Compared to existing off-road datasets, TOMD offers the
following novel features:

• A high-vertical-resolution LiDAR with 128 channels,
which eliminates the rolling shutter effect.

• The first off-road dataset to utilise a lux meter for recording
ambient illuminance.

• Coverage of repeated trail-based routes under diverse
environmental conditions.

• The inclusion of recorded teleoperation commands pro-
vides detailed control-level information, which is valuable
for route and traversability planning.

• Integration of high-precision real-time kinematic (RTK)
GNSS data to enable centimeter-level accuracy for locali-
sation and mapping.

A. Equipment and Sensor Setup
The Trail-based Off-road Multimodal Dataset is collected using
the Rover Pro 4WD Robot, an all-terrain robot platform designed



Fig. 3. Illuminance trends over time for three exemplar sequences
(sequence 1: afternoon, sequence 2: midday, sequence 3: dusk)
from TOMD the corresponding left image camera views from
the ZEDx stereo camera (inset). Excessively low illumination
conditions can cause the camera to become underexposed,
resulting in high levels of sensor noise and the loss of critical
visual scene information.

to withstand diverse environments and weather conditions. The
Rover Pro has dimensions of 62.0 cm × 39.0 cm × 25.4 cm
and a maximum speed of 2.5 m/s which is perfectly suited for
activities in areas where conventional large-wheelbase (road)
vehicles cannot readily access the terrain.

The robot is equipped with the following sensors, mounted on
a custom water-resistant payload (see Fig. 4) to ensure reliability
in challenging outdoor scenarios:

• LiDAR: Ouster OS1 (128 channels) with a 865 nm laser
wavelength, offering detection ranges of 100 m at >90%
probability and 120 m at >50% probability (under 100 klx
sunlight, 80% Lambertian reflectivity, 2048 points @
10 Hz). Features include 0.3 cm range resolution, 360◦
horizontal FoV, and 45◦ vertical FoV.

• Stereo Camera: ZEDx dual-lens stereo camera with
secure GMSL2 connection, designed for robust robotics
use. Supports resolutions of 2 × (1920 × 1200) @ 60 fps
and 2 × (960 × 600) @ 120 fps, with a maximum FoV of
110◦ (H) × 80◦ (V) × 120◦ (D).

• IMU: Integrated IMU in the ZEDx camera comprising
a 16-bit triaxial accelerometer and gyroscope. Provides
±12 G accelerometer range with 0.36 mg resolution,
±1000 dps gyroscope range with 0.03 dps resolution, and
±0.5% sensitivity error, at 400 Hz output rate.

• GNSS: ZED-F9P-0xB module with multi-band GNSS and
RTK, embedded in the ZEDx NVIDIA Jetson Orin NX
onboard computer. Offers up to 20 Hz update rate and
0.01 m ± 1 ppm positional accuracy (CEP).

• Lux Meter: Yoctopuce Light V4 USB ambient light sensor
with 0.01 lux resolution, capable of measuring up to
83,000 lux at 10 Hz.

A portable mini-PC powered by a NVIDIA Jetson Orin NX
16GB moduleserves as the onboard computer, chosen for its

Fig. 4. The Rover Pro robot is illustrated - front (top-left), top
(bottom-left), and side (top-right) views, alongside a real-world
image (bottom-right) indicating sensor mounting positions.
Coordinate axes adhere to the right-hand rule.

low power consumption. All sensors function as slaves and
communicate with the onboard PC, acting as the master, via
a standard ROS-based architecture. Technically, the onboard
PC runs the ROS core to subscribe to topics containing
data published by sensors, which operate as ROS nodes with
precise time-stamping, and subsequent synchronisation, from a
common software clock (ROS-based).

B. Data Description

Our TOMD includes nine traversal sequences, collected in the
hilly areas near the Department of Mathematics and Computer
Science at Durham University, encompassing various natural
terrains such as grasslands, bushes, trees, leaf-covered regions
and slopes (see Fig. 5). We collect repeated traversal routines
under varying ambient light conditions at different times of
the day (July-August). The dataset comprises five sequences
moving from the start point to the endpoint and four sequences
in the reverse direction. The average speed was maintained at
approximately 0.2 m/s, with each sequence lasting about five
minutes. Each sequence is stored in ROS bag format, enabling
efficient storage, synchronisation and offline analysis of recorded
sensor data.

C. Calibration and Synchronisation

LiDAR-to-camera calibration employs a two-stage strategy. In
the first stage, a target-based method [25] is utilised to determine
the transformation matrix [𝑅 |𝑡], where 𝑅 and 𝑡 represent the
rotation and translation parameters, respectively. In the second
stage, the transformation matrix obtained from the first stage
serves as a reliable initialization for a target-less method [26],
which further refines the calibration performance. Other sensors
are strictly calibrated according to the manufacturer factory
settings. Fig. 6 illustrates a LiDAR to camera projection result



Fig. 5. Our off-road trail-based data collection route (yellow
curve) comprising both diverse terrains and highly variable
scene illumination conditions.

Fig. 6. Evaluation of LiDAR-to-camera calibration: the 3D point
cloud captured by the OS-128 LiDAR is projected onto the 2D
image plane (shown in red) of the left image from the ZEDx
stereo camera.

(overlain) using the LiDAR-to-camera calibration obtained from
our two-stage calibration approach.

We implement a software-based synchronisation strategy. All
sensor data is down-sampled to 10 Hz using the LiDAR frame
frequency as the master. This is achieved using timestamps
provided by the Robot Operating System (ROS1, Noetic).

D. Annotation

Synchronized image frames are annotated to support the
supervised traversable pathway segmentation task. Fast SLIC
superpixels [27], [28] are first utilized as guidance, and then
subject to human annotator refinement, in order to annotate the
RGB images captured from the left camera (of the ZEDx stereo
camera) and label them as traversable (i.e. traversable vs. non-
traversable) as a two-state binary label.

IV. Traversable Pathway Detection

In this section, we propose a dynamic multiscale model for cross-
fusion, along with an early fusion strategy that leverages colour
chromaticity to integrate visual and spatial information (i.e.
camera and LiDAR data). These methods are further combined
into a mixed fusion strategy. The effectiveness of each proposed
fusion process is assessed under low, medium, and high ambient
illumination conditions, and the evaluation results are explained
in detail in Section IV-D.

A. Dynamic Multiscale Data Fusion Model
Inspired by [29], we propose a dynamic multiscale network
for multi-sensor data fusion, with the architecture shown in
Fig. 7. The core component of the network is the Dynamic
Convolutional Module (DCM), which is designed to extract
multiscale feature representations in a parallel manner. Given
two feature maps generated by the backbone, F1 ∈ Rℎ×𝑤×𝑐 and
F2 ∈ Rℎ×𝑤×𝑐, where ℎ, 𝑤, and 𝑐 represent the height, width,
and number of channels of the feature maps, respectively.

Each DCM consists of two branches. In the first branch,
feature reduction 𝑓𝑘 is applied to the input feature map F1,
producing a reduced feature map 𝑓𝑘 (F1) ∈ Rℎ×𝑤×𝑐′ . Here,
𝑐′ is the number of channels in the reduced feature map
(𝑐′ < 𝑐) and 𝑓𝑘 is a convolution operation 1 × 1 where the
parameter 𝑘 indicates the kernel size of the context-aware
filters. Simultaneously, the second branch generates context-
aware filters 𝑔𝑘 (F2) ∈ R𝑘×𝑘×𝑐′ by applying an adaptive average
pooling operation followed by a 1 × 1 convolution operation.
Subsequently, 𝑓𝑘 (F1) is convolved with 𝑔𝑘 (F2) using depthwise
convolution, followed by a 1 × 1 convolution, to produce
the scale-specific output of the DCM (see Eqn. 1), where
𝑂𝑘 ∈ Rℎ×𝑤×𝑐′ :

𝑂𝑘 = Conv1×1 ( 𝑓𝑘 (F1) ⊗ 𝑔𝑘 (F2)) (1)

B. Experimental Dataset Generation
The dataset includes an entirely annotated sequence and key
frames (one in every ten frames) from three additional se-
quences, resulting in a total of 3,508 frames. These frames are
randomly divided into training, validation and testing subsets
with a split ratio of 8:1:1.

In addition to using 2D images as the primary input modality,
we incorporate corresponding sparse depth maps (𝐷𝑠). 3D
LiDAR point cloud (𝑋,𝑌, 𝑍) is firstly converted into 3D camera
point cloud (𝑋 ′, 𝑌 ′, 𝑍 ′) using:

𝑋 ′

𝑌 ′

𝑍 ′

 = 𝑅

𝑋

𝑌

𝑍

 + 𝑡 (2)

with R and t representing the extrinsic calibration matrix,
obtained through the calibration process described in Section
III-C, between the LiDAR and the camera. 3D camera point
cloud (𝑋 ′, 𝑌 ′, 𝑍 ′) is then projected into a 2D image plane (𝑢, 𝑣)
using:

𝐷𝑠 (𝑢, 𝑣) =


𝑍 ′, if


𝑢

𝑣

1

 = round
©«𝐾


𝑋 ′

𝑌 ′

𝑍 ′


ª®®¬ −


1
1
0

 ,
0, otherwise.

0 ≤ 𝑢 < 𝑊, 0 ≤ 𝑣 < 𝐻.

(3)

with 𝐾 as the intrinsic camera matrix, and 𝑊 and 𝐻 denote the
width and the height of the image, respectively. For duplicate
(u, v), always choose the closet point to (u, v).

We also generate dense depth maps (𝐷𝑑) using a CPU-
efficient depth completion method based on multi-scale dilations



Fig. 7. Architecture of the proposed dynamic multiscale fusion network. Input modalities (e.g., RGB and 𝑟𝑔𝐷𝑑) are processed
via a shared backbone and parallel DCMs to capture multiscale features, with context-aware filters from 𝐹2 applied to 𝐹1 for final
prediction.

(a) RGB image (b) 𝐷𝑠 (c) 𝐷𝑑

(d) 𝑟𝑔𝐷𝑠 (e) 𝑟𝑔𝐷𝑑 (f) Annotation

Fig. 8. An example of the five input modality combinations used
in addition to the ground truth annotation of traversable pathway
area.

[30], which incorporates additional noise removal to preserve
local structure.

An early fusion approach is presented utilising colour chro-
maticity [31] (𝑟, 𝑔) in combination with sparse or dense depth
maps to ensure no additional computational burden, defined as:

𝑟

𝑔

𝑏

 =
1

𝑅 + 𝐺 + 𝐵


𝑅

𝐺

𝐵

 , for 𝑅 + 𝐺 + 𝐵 ≠ 0. (4)

where, 𝑅, 𝐺, and 𝐵 represent the red, green and blue colour
channels of an original RGB image, respectively. When unit
normalised, as the sum of the (𝑟, 𝑔, 𝑏) channels is unit length,
discarding the 𝑏 channel does not result in any loss of colour
information and hence removes data redundancy. The input
modalities can thus be expressed as 𝑟𝑔𝐷𝑠 and 𝑟𝑔𝐷𝑑 to denote
the combination of colour chromaticity, (𝑟, 𝑔) and sparse/dense
depth, 𝐷 {𝑠,𝑑} . Fig. 8 illustrates an example of each type of input
sensor data combination.

In order to observe the performance of the model under
different ambient lighting conditions, the collected lux data
is used as a metric to partition the test dataset into three
ambient illuminance level subsets: low (0–100 lux), medium
(100–10,000 lux), and high (>10,000 lux).

C. Experimental Setting
We first compare our dynamic multi-scale data fusion model
with OFF-Net [7], and then explore the impact of different fusion
strategies on segmentation performance. Following previous
works [7], [20], We use pixel accuracy, the Intersection over
Union (IoU) metric in conjunction with the F1 score to evaluate
segmentation performance.

We employ Dilated Residual Networks (DRN-A-50) [32] as
the backbone of our model. The model is optimised using the
Stochastic Gradient Descent with Momentum (SGDM) [33]
optimiser. The initial learning rate is set to 0.001, and the batch
size is configured to 40. All experiments are conducted using a
Nvidia A100 GPU.

D. Evaluation Results
Table II presents the quantitative results on TOMD. OFF-Net
[7] uses sparse depth with linear interpolation to construct
a dense depth map and employs RGB as input. It estimates
surface normals to fuse with the RGB input. However, in trail-
based environments, the estimated normals fluctuate drastically,
leading to noisy and less reliable guidance for segmentation.
Our model, which follows a mixed fusion strategy, outperforms
OFF-Net [7] by +4.46% in IoU and +2.57% in F1-score.
Additionally, our method runs significantly faster, achieving
25.58 FPS compared to OFF-Net’s 15.65 FPS, demonstrating
better suitability for real-time applications.

A comprehensive comparison of model evaluation results
across three illumination levels is presented in Table III, along-
side trail prediction examples in Fig. 9. Under low illumination



TABLE II: Test quantitative results on TOMD using metrics:
accuracy, IoU, F1 score, and Frames Per Second (FPS).

Model Input 1 Input 2 Accuracy (%) IoU (%) F1 score (%) FPS

OFF-Net [7] 𝑅𝐺𝐵 𝐷𝑑 95.70 84.70 91.70 15.65
Ours 𝑅𝐺𝐵 𝑟𝑔𝐷𝑑 95.85 89.16 94.27 25.58

conditions (Table III - (a)), the single RGB modality performs
poorly due to the limited ability of the camera to capture fine de-
tails in underexposed off-road, trail-based scenarios. In contrast,
depth information effectively compensates for this limitation by
providing stable spatial details unaffected by lighting variations.
Notably, early, cross and mixed fusion strategies, particularly
when fusing dense depth, yield substantial improvements in
traversable pathway segmentation performance.

At medium illumination levels (Table III - (b)), cross and
mixed fusion approaches offer only marginal enhancements in
trail detection compared to the RGB-only input. Under high
illumination conditions (Table III - (c)), the most challenging
scenario, frames primarily depict open grassland and similar
scenes, where increased noise in depth maps may impact the
cross-fusion results. This suggests that the limited adaptability of
depth-generated dynamic filters to color-specific features leads
to suboptimal feature integration. However, early and mixed
fusion strategies with 𝑟𝑔𝐷𝑑 integration result in a noticeable
increase in IoU, demonstrating the advantages of leveraging
depth information even in well illuminated environments.

The overall test evaluation results are presented in Table III
- (d). Firstly, in the absence of data fusion, both sparse and
dense depth inputs outperform single RGB images. Secondly,
the comparable performance of sparse and dense depth maps
indicates that high-resolution LiDAR data provides rich spatial
information, effectively enhancing the segmentation model.
Lastly, mixed fusion with RGB and 𝑟𝑔𝐷𝑑 achieves the best
trail detection performance, with an accuracy improvement of
+1.76%, an IoU increase of +3.69%, and an F1-score gain of
+4.97%.

V. conclusion
We propose the TOMD dataset, specifically designed for

unstructured and complex trail-like scenarios using a medium-
scale all-terrain robot platform. The dataset includes high-
fidelity multimodal sensor data, such as 128-channel 3D LiDAR,
stereo imagery, GNSS, IMU, telemetry control data, and
illumination measurements, collected through repeated route
traversals under varying environmental conditions. It comprises
31.4k frame pairs of image and LiDAR, with annotated
traversability levels for key frames. Furthermore, we propose
a novel dynamic multi-scale data fusion model for precise
traversable trail-like area prediction. The evaluation of early,
cross, and mixed fusion processes under different illumination
conditions highlights their influence on model performance
and demonstrates the potential applicability the dataset across
diverse environmental settings.

Future work will expand the dataset with diverse routes
featuring varying vegetation densities and natural obstacles,

TABLE III: Comparison of Performance Under Various Ambi-
ent Illumination Levels. The highest performance metric result
in each column is highlighted in bold, while the second-highest
performance metric result is underlined.

(a) low (0–100 lux)

Data fusion Input 1 Input 2 Accuracy (%) IoU (%) F1 score (%)

N/A 𝑅𝐺𝐵 𝑅𝐺𝐵 91.06 80.13 88.46
Early 𝑟𝑔𝐷𝑠 𝑟𝑔𝐷𝑠 94.51 86.65 92.36
Early 𝑟𝑔𝐷𝑑 𝑟𝑔𝐷𝑑 94.65 87.02 92.72
Cross 𝑅𝐺𝐵 𝐷𝑠 95.49 89.27 94.15
Cross 𝑅𝐺𝐵 𝐷𝑑 95.78 89.99 94.57
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑠 95.32 89.02 94.01
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑑 95.62 89.62 94.37

(b) medium (100–10,000 lux)

Data fusion Input 1 Input 2 Accuracy (%) IoU (%) F1 score (%)

N/A 𝑅𝐺𝐵 𝑅𝐺𝐵 96.71 91.71 95.36
Early 𝑟𝑔𝐷𝑠 𝑟𝑔𝐷𝑠 96.54 90.95 94.67
Early 𝑟𝑔𝐷𝑑 𝑟𝑔𝐷𝑑 95.77 89.88 94.40
Cross 𝑅𝐺𝐵 𝐷𝑠 97.61 93.71 96.56
Cross 𝑅𝐺𝐵 𝐷𝑑 97.60 93.79 96.63
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑠 97.24 92.87 96.11
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑑 97.19 93.05 96.17

(c) high (>10,000 lux)

Data fusion Input 1 Input 2 Accuracy (%) IoU (%) F1 score (%)

N/A 𝑅𝐺𝐵 𝑅𝐺𝐵 92.68 79.58 79.58
Early 𝑟𝑔𝐷𝑠 𝑟𝑔𝐷𝑠 91.09 75.34 84.33
Early 𝑟𝑔𝐷𝑑 𝑟𝑔𝐷𝑑 92.71 79.88 87.95
Cross 𝑅𝐺𝐵 𝐷𝑠 90.88 73.19 80.60
Cross 𝑅𝐺𝐵 𝐷𝑑 91.52 75.40 83.05
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑠 91.50 75.48 83.11
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑑 93.76 82.01 88.90

(d) Summary

Data fusion Input 1 Input 2 Accuracy (%) IoU (%) F1 score (%)

N/A 𝑅𝐺𝐵 𝑅𝐺𝐵 94.18 85.47 89.30
N/A 𝐷𝑠 𝐷𝑠 94.74 86.10 91.72
N/A 𝐷𝑑 𝐷𝑑 94.91 86.52 92.09
Early 𝑟𝑔𝐷𝑠 𝑟𝑔𝐷𝑠 94.53 85.59 91.25
Early 𝑟𝑔𝐷𝑑 𝑟𝑔𝐷𝑑 95.07 87.18 92.59
Cross 𝑅𝐺𝐵 𝐷𝑠 95.30 87.18 91.72
Cross 𝑅𝐺𝐵 𝐷𝑑 95.41 87.57 92.25
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑠 95.24 87.23 92.09
Mixed 𝑅𝐺𝐵 𝑟𝑔𝐷𝑑 95.85 89.16 94.27

such as rocks and water crossings. We plan to capture seasonal
and weather variations and provide fine-grained annotations
such as obstacle types and surface roughness for terrain
classification and adaptive navigation. Furthermore, we will
integrate temporal information for dynamic changes and explore
attention-based mechanisms for better feature fusion. Finally,
self-supervised learning will be employed to reduce annotation
efforts and improve performance in underrepresented scenarios.
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